2,011 research outputs found

    Controversy in statistical analysis of functional magnetic resonance imaging data

    Get PDF
    To test the validity of statistical methods for fMRI data analysis, Eklund et al. (1) used, for the first time, large-scale experimental data rather than simulated data. Using resting-state fMRI measurements to represent a null hypothesis of no task-induced activation, the authors compare familywise error rates for voxel-based and cluster-based inferences for both parametric and nonparametric methods. Eklund et al.’s study used three fMRI statistical analysis packages. They found that, for a target familywise error rate of 5%, the parametric methods gave invalid cluster-based inferences and conservative voxel-based inferences

    Reply to Grace: Role of cholinergic neurons in rapid eye movement (REM) sleep control

    Get PDF
    We thank Grace (1) for the opportunity to discuss the role of cholinergic neurons in rapid eye movement (REM) sleep further. Grace suggests that optogenetic activation of a population of neurons does not necessarily demonstrate their role in the endogenous system when interrogating complex neural circuitry. We agree that we do not prove necessity of cholinergic neurons in REM sleep generation, as we point out in our discussion, “Future studies that selectively inhibit cholinergic neurons in the PPT [pedunculopontine tegmentum] and LDT [laterodorsal tegmentum] of nonhypercholinergic mice are needed to determine if cholinergic neurons are necessary for REM sleep generation” (2). However, in our report we do demonstrate the sufficiency of PPT/LDT neurons to influence REM sleep initiation but not influence REM sleep duration, thus distinguishing the role of cholinergic neurons on these properties of REM sleep. In addition, activation of cholinergic PPT neurons during non-REM sleep induced REM sleep versus wakefulness. Our data are consistent with the role of cholinergic neurons in generating an activated brain state and many studies pointing to the role of cholinergic neurons in REM sleep regulation (reviewed in ref. 3)

    An optimization formulation for characterization of pulsatile cortisol secretion

    Get PDF
    Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an â„“0-norm cost function for this controller, and solve a reweighed â„“1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant GM104948-03)National Science Foundation (U.S.) (Grant 0836720)National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (Grant EFRI-0735956

    Sparse spectral estimation from point process observations

    Get PDF
    We consider the problem of estimating the power spectral density of the neural covariates underlying the spiking of a neuronal population. We assume the spiking of the neuronal ensemble to be described by Bernoulli statistics. Furthermore, we consider the conditional intensity function to be the logistic map of a second-order stationary process with sparse frequency content. Using the binary spiking data recorded from the population, we calculate the maximum a posteriori estimate of the power spectral density of the process while enforcing sparsity-promoting priors on the estimate. Using both simulated and clinically recorded data, we show that our method outperforms the existing methods for extracting a frequency domain representation from the spiking data of a neuronal population

    Clinical Electroencephalography for Anesthesiologists

    Get PDF
    The widely used electroencephalogram-based indices for depth-of-Anesthesia monitoring assume that the same index value defines the same level of unconsciousness for all anesthetics. In contrast, we show that different anesthetics act at different molecular targets and neural circuits to produce distinct brain states that are readily visible in the electroencephalogram. We present a two-part review to educate anesthesiologists on use of the unprocessed electroencephalogram and its spectrogram to track the brain states of patients receiving anesthesia care. Here in part I, we review the biophysics of the electroencephalogram and the neurophysiology of the electroencephalogram signatures of three intravenous anesthetics: propofol, dexmedetomidine, and ketamine, and four inhaled anesthetics: sevoflurane, isoflurane, desflurane, and nitrous oxide. Later in part II, we discuss patient management using these electroencephalogram signatures. Use of these electroencephalogram signatures suggests a neurophysiologically based paradigm for brain state monitoring of patients receiving anesthesia care.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant TR01-GM104948

    Modeling two-photon calcium fluorescence of episodic V1 recordings using multifrequency analysis

    Get PDF
    The use of two-photon microscopy allows for imaging of deep neural tissue in vivo. This paper examines frequency-based analysis to two-photon calcium fluorescence images with the goal of deriving smooth tuning curves. We present a multifrequency analysis approach for improved extraction of calcium responses in episodic stimulation experiments, that is, when the stimulus is applied for a number of frames, then turned off for the next few frames, and so on. Episodic orientation stimulus was applied while recording from the primary visual cortex of an anesthetized mouse. The multifrequency model demonstrated improved tuning curve descriptions of the neurons. It also offers perspective regarding the characteristics of calcium fluorescence imaging of the brain.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant EY07023)National Institutes of Health (U.S.) (Grant EY017098

    Real-time segmentation and tracking of brain metabolic state in ICU EEG recordings of burst suppression

    Get PDF
    We provide a method for estimating brain metabolic state based on a reduced-order model of EEG burst suppression. The model, derived from previously suggested biophysical mechanisms of burst suppression, describes important electrophysiological features and provides a direct link to cerebral metabolic rate. We design and fit the estimation method from EEG recordings of burst suppression from a neurological intensive care unit and test it on real and synthetic data.National Institutes of Health (U.S.) (Grant DP1-OD003646

    Spatial variation in automated burst suppression detection in pharmacologically induced coma

    Get PDF
    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.National Institutes of Health (U.S.) (Grant K23 NS090900)National Institute of Neurological Diseases and Stroke (U.S.) (Grant K23 NS090900)National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant TROI-GMI04948

    Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression

    Get PDF
    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI.National Institutes of Health (U.S.) (Award DP1-OD003646)National Institutes of Health (U.S.) (Award TR01-GM104948)National Institutes of Health (U.S.) (Grant R44NS071988)National Institute of Neurological Diseases and Stroke (U.S.) (Grant Grant R44NS071988

    Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans

    Get PDF
    State-dependent activity of locus ceruleus (LC) neurons has long suggested a role for noradrenergic modulation of arousal. However, in vivo insights into noradrenergic arousal circuitry have been constrained by the fundamental inaccessibility of the human brain for invasive studies. Functional magnetic resonance imaging (fMRI) studies performed during site-specific pharmacological manipulations of arousal levels may be used to study brain arousal circuitry. Dexmedetomidine is an anesthetic that alters the level of arousal by selectively targeting α2 adrenergic receptors on LC neurons, resulting in reduced firing rate and norepinephrine release. Thus, we hypothesized that dexmedetomidine-induced altered arousal would manifest with reduced functional connectivity between the LC and key brain regions involved in the regulation of arousal. To test this hypothesis, we acquired resting-state fMRI data in right-handed healthy volunteers 18–36 years of age (n = 15, 6 males) at baseline, during dexmedetomidine-induced altered arousal, and recovery states. As previously reported, seed-based resting-state fMRI analyses revealed that the LC was functionally connected to a broad network of regions including the reticular formation, basal ganglia, thalamus, posterior cingulate cortex (PCC), precuneus, and cerebellum. Functional connectivity of the LC to only a subset of these regions (PCC, thalamus, and caudate nucleus) covaried with the level of arousal. Functional connectivity of the PCC to the ventral tegmental area/pontine reticular formation and thalamus, in addition to the LC, also covaried with the level of arousal. We propose a framework in which the LC, PCC, thalamus, and basal ganglia comprise a functional arousal circuitry
    • …
    corecore